Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Cell Stem Cell ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38697109

RESUMEN

Human pluripotent stem cell-derived ß cells (hPSC-ß cells) show the potential to restore euglycemia. However, the immature functionality of hPSC-ß cells has limited their efficacy in application. Here, by deciphering the continuous maturation process of hPSC-ß cells post transplantation via single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we show that functional maturation of hPSC-ß cells is an orderly multistep process during which cells sequentially undergo metabolic adaption, removal of negative regulators of cell function, and establishment of a more specialized transcriptome and epigenome. Importantly, remodeling lipid metabolism, especially downregulating the metabolic activity of ceramides, the central hub of sphingolipid metabolism, is critical for ß cell maturation. Limiting intracellular accumulation of ceramides in hPSC-ß cells remarkably enhanced their function, as indicated by improvements in insulin processing and glucose-stimulated insulin secretion. In summary, our findings provide insights into the maturation of human pancreatic ß cells and highlight the importance of ceramide homeostasis in function acquisition.

2.
Cell Prolif ; 57(2): e13540, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37814474

RESUMEN

Derivation of human hepatocytes from pluripotent stem cells in vitro has important applications including cell therapy and drug discovery. However, the differentiation of pluripotent stem cells into hepatocytes in vitro was not well recapitulated the development of liver. Here, we developed a differentiation protocol by mimicking the two-stage development of hepatoblasts, which permits the efficient generation of hepatic progenitor cells from chemically induced pluripotent stem cells (hCiPSCs). Single-cell RNA sequencing (scRNA-seq) indicates the similarity between hepatoblasts differentiated in vitro and in vivo. Moreover, hCiPSC-derived hepatic progenitor cells can further differentiate into hepatocytes that are similar to primary human hepatocytes with respect to gene expression and key hepatic functions. Our results demonstrate the feasibility of generating hepatic progenitor cells and hepatocytes from hCiPSCs with high efficiency and set the foundation for broad translational applications of hCiPSC-derived hepatocytes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Hepatocitos/metabolismo , Hígado/metabolismo , Diferenciación Celular
3.
Sci China Life Sci ; 67(3): 529-542, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38041780

RESUMEN

Irreversible eye lesions, such as glaucoma and traumatic optic neuropathy, can cause blindness; however, no effective treatments exist. The optic nerve, in particular, lacks the capacity to spontaneously regenerate, requiring the development of an effective approach for optic nerve repair, which has proven challenging. Here, we demonstrate that a combination of the small molecules 3BDO and trichostatin A (TSA)-which regulate mTOR and HDAC, respectively-packaged in thermosensitive hydrogel for 4-week-sustained release after intravitreal injection, effectively induced optic nerve regeneration in a mouse model of optic nerve crush injury. Moreover, this combination of 3BDO and TSA also protected axon projections and improved visual responses in an old mouse model (11 months old) of glaucoma. Taken together, our data provide a new, local small molecule-based treatment for the effective induction of optic nerve repair, which may represent a foundation for the development of pharmacological methods to treat irreversible eye diseases.


Asunto(s)
Glaucoma , Traumatismos del Nervio Óptico , Ratones , Animales , Hidrogeles , Nervio Óptico/patología , Traumatismos del Nervio Óptico/tratamiento farmacológico , Glaucoma/patología , Axones/fisiología , Modelos Animales de Enfermedad , Células Ganglionares de la Retina/fisiología , Regeneración Nerviosa/fisiología
4.
Oncoimmunology ; 12(1): 2265703, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808405

RESUMEN

Chimeric antigen receptor (CAR) T cell immunotherapy has demonstrated success in the treatment of hematological malignancies; however, its efficacy and applications in solid tumors remain limited. Immunosuppressive factors, particularly inhibitory checkpoint molecules, restrict CAR T cell activity inside solid tumors. The modulation of checkpoint pathways has emerged as a promising approach to promote anti-tumor responses in CAR T cells. Programmed cell death protein 1 (PD1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) are two critical immune-checkpoint molecules that suppress anti-tumor activity in T cells. Simultaneous targeting of these two inhibitory molecules could be an efficient checkpoint modulation strategy. Here, we developed a PD1-TIGIT chimeric immune-checkpoint switch receptor (CISR) that enhances the efficacy of CAR T cell immunotherapy by reversing the inhibitory checkpoint signals of PD1/PDL1 and/or TIGIT/CD155. In addition to neutralizing PDL1 and CD155, this chimeric receptor is engineered with the transmembrane region and intracellular domain of CD28, thereby effectively enhancing T cell survival and tumor-targeting functions. Notably, under simultaneous stimulation of PDL1 and CD155, CISR-CAR T cells demonstrate superior performance in terms of cell survival, proliferation, cytokine release, and cytotoxicity in vitro, compared with conventional CAR T cells. Experiments utilizing both cell line- and patient-derived xenotransplantation tumor models showed that CISR-CAR T cells exhibit robust infiltration and anti-tumor efficiency in vivo. Our results highlight the potential for the CISR strategy to enhance T cell anti-tumor efficacy and provide an alternative approach for T cell-based immunotherapies.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Humanos , Linfocitos T , Receptor de Muerte Celular Programada 1 , Neoplasias/terapia , Inmunoterapia , Neoplasias Hematológicas/metabolismo , Receptores Inmunológicos/metabolismo
5.
Cell Stem Cell ; 30(9): 1130-1147, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37625410

RESUMEN

Chemical reprogramming offers an unprecedented opportunity to control somatic cell fate and generate desired cell types including pluripotent stem cells for applications in biomedicine in a precise, flexible, and controllable manner. Recent success in the chemical reprogramming of human somatic cells by activating a regeneration-like program provides an alternative way of producing stem cells for clinical translation. Likewise, chemical manipulation enables the capture of multiple (stem) cell states, ranging from totipotency to the stabilization of somatic fates in vitro. Here, we review progress in using chemical approaches for cell fate manipulation in addition to future opportunities in this promising field.


Asunto(s)
Células Madre Pluripotentes , Humanos , Diferenciación Celular
6.
Aging Cell ; 22(7): e13858, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37154113

RESUMEN

Aging is characterized by chronic low-grade inflammation in multiple tissues, also termed "inflammaging", which represents a significant risk factor for many aging-related chronic diseases. However, the mechanisms and regulatory networks underlying inflammaging across different tissues have not yet been fully elucidated. Here, we profiled the transcriptomes and epigenomes of the kidney and liver from young and aged mice and found that activation of the inflammatory response is a conserved signature in both tissues. Moreover, we revealed links between transcriptome changes and chromatin dynamics through integrative analysis and identified AP-1 and ETS family transcription factors (TFs) as potential regulators of inflammaging. Further in situ validation showed that c-JUN (a member of the AP-1 family) was mainly activated in aged renal and hepatic cells, while increased SPI1 (a member of the ETS family) was mostly induced by elevated infiltration of macrophages, indicating that these TFs have different mechanisms in inflammaging. Functional data demonstrated that genetic knockdown of Fos, a major member of the AP-1 family, significantly attenuated the inflammatory response in aged kidneys and livers. Taken together, our results revealed conserved signatures and regulatory TFs of inflammaging in the kidney and liver, providing novel targets for the development of anti-aging interventions.


Asunto(s)
Regulación de la Expresión Génica , Factor de Transcripción AP-1 , Ratones , Animales , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Hígado/metabolismo , Envejecimiento/genética , Inflamación/genética , Riñón/metabolismo
7.
Cell Rep ; 42(6): 112547, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37224020

RESUMEN

Human somatic cells can be reprogrammed to pluripotent stem cells by small molecules through an intermediate stage with a regeneration signature, but how this regeneration state is induced remains largely unknown. Here, through integrated single-cell analysis of transcriptome, we demonstrate that the pathway of human chemical reprogramming with regeneration state is distinct from that of transcription-factor-mediated reprogramming. Time-course construction of chromatin landscapes unveils hierarchical histone modification remodeling underlying the regeneration program, which involved sequential enhancer recommissioning and mirrored the reversal process of regeneration potential lost in organisms as they mature. In addition, LEF1 is identified as a key upstream regulator for regeneration gene program activation. Furthermore, we reveal that regeneration program activation requires sequential enhancer silencing of somatic and proinflammatory programs. Altogether, chemical reprogramming resets the epigenome through reversal of the loss of natural regeneration, representing a distinct concept for cellular reprogramming and advancing the development of regenerative therapeutic strategies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Epigenoma , Epigénesis Genética , Reprogramación Celular/genética , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo
8.
Cell Stem Cell ; 30(4): 450-459.e9, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36944335

RESUMEN

We recently demonstrated the chemical reprogramming of human somatic cells to pluripotent stem cells (hCiPSCs), which provides a robust approach for cell fate manipulation. However, the utility of this chemical approach is currently hampered by slow kinetics. Here, by screening for small molecule boosters and systematically optimizing the original condition, we have established a robust, chemically defined reprogramming protocol, which greatly shortens the induction time from ∼50 days to a minimum of 16 days and enables highly reproducible and efficient generation of hCiPSCs from all 17 tested donors. We found that this optimized protocol enabled a more direct reprogramming process by promoting cell proliferation and oxidative phosphorylation metabolic activities at the early stage. Our results highlight a distinct chemical reprogramming pathway that leads to a shortcut for the generation of human pluripotent stem cells, which represents a powerful strategy for human cell fate manipulation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Reprogramación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular , Proliferación Celular
9.
J Cachexia Sarcopenia Muscle ; 14(2): 903-914, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36726338

RESUMEN

BACKGROUND: Direct cell-fate conversion by chemical reprogramming is promising for regenerative cell therapies. However, this process requires the reactivation of a set of master transcription factors (TFs) of the target cell type, which has proven challenging using only small molecules. METHODS: We developed a novel small-molecule cocktail permitting robust skin cell to muscle cell conversion. By single cell sequencing analysis, we identified a Pax3 (Paired box 3)-expressing melanocyte population holding a superior myogenic potential outperforming other seven types of skin cells. We further validated the single cell sequencing analysis results using immunofluorescence staining, in situ hybridization and FACS sorting and confirmed the myogenic potential of melanocytes during chemical reprogramming. We used single cell RNA-seq that detect the potential converted cell type, uncovering a unique role of Pax3 in facilitating chemical reprogramming from melanocytes to muscle cells. RESULTS: In this study, we demonstrated that the Pax3-expressing melanocytes to be a skin cell type for skeletal muscle cell fate conversion in chemical reprogramming. By developing a small-molecule cocktail, we showed an efficient melanocyte reprogramming to skeletal muscle cells (40%, P < 0.001). The endogenous expression of specific TFs may circumvent the additional requirement for TF reactivation and form a shortcut for cell fate conversion, suggesting a basic principle that could ease cell fate conversion. CONCLUSIONS: Our study demonstrates the first report of melanocyte-to-muscle conversion by small molecules, suggesting a novel strategy for muscle regeneration. Furthermore, skin is one of the tissues closely located to skeletal muscle, and therefore, our results provide a promising foundation for therapeutic chemical reprogramming in vivo treating skeletal muscle degenerative diseases.


Asunto(s)
Melanocitos , Fibras Musculares Esqueléticas , Melanocitos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Diferenciación Celular , Músculo Esquelético/metabolismo , Piel
10.
Nat Metab ; 5(1): 29-40, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36624157

RESUMEN

Human pluripotent stem cell-derived islets (hPSC islets) are a promising alternative to primary human islets for the treatment of insulin-deficient diabetes. We previously demonstrated the feasibility of this approach in nonhuman primates; however, the therapeutic effects of hPSC islets can be limited by the maladaptive processes at the transplantation site. Here, we demonstrate successful implantation of hPSC-derived islets in a new transplantation site in the abdomen, the subanterior rectus sheath, in eight nonhuman primates (five male and three female). In this proof-of-principle study, we find that hPSC islets survive and gradually mature after transplantation, leading to improved glycemic control in diabetic primates. Notably, C-peptide secretion responds to meal challenge from 6 weeks post-transplantation (wpt), with stimulation indices comparable to those of native islets. The average post-prandial C-peptide level reaches approximately 2.0 ng ml-1 from 8 wpt, which is five times higher than the peak value we previously obtained after portal vein infusion of hPSC islets and was associated with a decrease of glycated hemoglobin levels by 44% at 12 wpt. Although additional studies in larger cohorts involving long-term follow-up of transplants are needed, our results indicate that the subanterior rectus sheath supports functional maturation and maintenance of hPSC islets, suggesting that it warrants further exploration as a transplantation target site in the context of for hPSC-based cell-replacement therapies.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Masculino , Humanos , Femenino , Trasplante de Islotes Pancreáticos/métodos , Péptido C , Primates , Abdomen
11.
Stem Cell Reports ; 18(1): 131-144, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36400030

RESUMEN

Cellular conversion can be induced by perturbing a handful of key transcription factors (TFs). Replacement of direct manipulation of key TFs with chemical compounds offers a less laborious and safer strategy to drive cellular conversion for regenerative medicine. Nevertheless, identifying optimal chemical compounds currently requires large-scale screening of chemical libraries, which is resource intensive. Existing computational methods aim at predicting cell conversion TFs, but there are no methods for identifying chemical compounds targeting these TFs. Here, we develop a single cell-based platform (SiPer) to systematically prioritize chemical compounds targeting desired TFs to guide cellular conversions. SiPer integrates a large compendium of chemical perturbations on non-cancer cells with a network model and predicted known and novel chemical compounds in diverse cell conversion examples. Importantly, we applied SiPer to develop a highly efficient protocol for human hepatic maturation. Overall, SiPer provides a valuable resource to efficiently identify chemical compounds for cell conversion.


Asunto(s)
Medicina Regenerativa , Factores de Transcripción , Humanos , Biología Computacional/métodos
12.
Genes Cells ; 28(2): 156-169, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36530170

RESUMEN

Extended pluripotent stem cells (EPSCs) derived from mice and humans showed an enhanced potential for chimeric formation. By exploiting transcriptomic approaches, we assessed the differences in gene expression profile between extended EPSCs derived from mice and humans, and those newly derived from the common marmoset (marmoset; Callithrix jacchus). Although the marmoset EPSC-like cells displayed a unique colony morphology distinct from murine and human EPSCs, they displayed a pluripotent state akin to embryonic stem cells (ESCs), as confirmed by gene expression and immunocytochemical analyses of pluripotency markers and three-germ-layer differentiation assay. Importantly, the marmoset EPSC-like cells showed interspecies chimeric contribution to mouse embryos, such as E6.5 blastocysts in vitro and E6.5 epiblasts in vivo in mouse development. Also, we discovered that the perturbation of gene expression of the marmoset EPSC-like cells from the original ESCs resembled that of human EPSCs. Taken together, our multiple analyses evaluated the efficacy of the method for the derivation of marmoset EPSCs.


Asunto(s)
Callithrix , Células Madre Embrionarias , Animales , Humanos , Ratones , Células Madre Embrionarias/metabolismo , Diferenciación Celular , Perfilación de la Expresión Génica , Transcriptoma
13.
Stem Cell Reports ; 17(11): 2531-2547, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36270282

RESUMEN

The detailed understanding of fibrogenesis has been hampered by a lack of important functional quiescence characteristics and an in vitro model to recapitulate hepatic stellate cell (HSC) activation. In our study, we establish robust endoderm- and mesoderm-sourced quiescent-like induced HSCs (iHSCs) derived from human pluripotent stem cells. Notably, iHSCs present features of mature HSCs, including accumulation of vitamin A in the lipid droplets and maintained quiescent features. In addition, iHSCs display a fibrogenic response and secrete collagen I in response to hepatoxicity caused by thioacetamide, acetaminophen, and hepatitis B and C virus infection. Antiviral therapy attenuated virally induced iHSC activation. Interestingly, endoderm- and mesoderm-derived iHSCs showed similar iHSC phenotypes. Therefore, we provide a novel and robust method to efficiently generate functional iHSCs from hESC and iPSC differentiation, which could be used as a model for hepatocyte toxicity prediction, anti-liver-fibrosis drug screening, and viral hepatitis-induced liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Células Madre Pluripotentes , Humanos , Cirrosis Hepática/patología , Cirrosis Hepática/terapia , Tioacetamida/toxicidad , Hepatocitos
14.
Antiviral Res ; 207: 105406, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36084850

RESUMEN

Members of the tripartite motif (TRIM) protein family strongly induced by interferons (IFNs) are parts of the innate immune system with antiviral activity. However, it is still unclear which TRIMs could play important roles in hepatitis B virus (HBV) inhibition. Here, we identified that TRIM56 expression responded in IFN-treated HepG2-NTCP cells and HBV-infected liver tissues, which was a potent IFN-inducible inhibitor of HBV replication. Mechanistically, TRIM56 suppressed HBV replication via its Ring and C-terminal domain. C-terminal domain was essential for TRIM56 translocating from cytoplasm to nucleus during HBV infection. Further analysis revealed that TRIM56's Ring domain targeted IκBα for ubiquitination. This modification induced phosphorylation of p65, which subsequently inhibited HBV core promoter activity, resulting in the inhibition of HBV replication. The p65 was found to be necessary for NF-κB signal pathway to inhibit HBV replication. We verified our findings using HepG2-NTCP and primary human hepatocytes. Our findings reveal that TRIM56 is a critical antiviral immune effector and exerts an anti-HBV activity via NF-κB signal pathway, which is essential for inhibiting transcription of HBV covalently closed circular DNA.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Antivirales/farmacología , ADN Circular , Humanos , Interferones/farmacología , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/genética , Replicación Viral
16.
Cell Res ; 32(6): 513-529, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35508506

RESUMEN

It is challenging to derive totipotent stem cells in vitro that functionally and molecularly resemble cells from totipotent embryos. Here, we report that a chemical cocktail enables the derivation of totipotent-like stem cells, designated as totipotent potential stem (TPS) cells, from 2-cell mouse embryos and extended pluripotent stem cells, and that these TPS cells can be stably maintained long term in vitro. TPS cells shared features with 2-cell mouse embryos in terms of totipotency markers, transcriptome, chromatin accessibility and DNA methylation patterns. In vivo chimera formation assays show that these cells have embryonic and extraembryonic developmental potentials at the single-cell level. Moreover, TPS cells can be induced into blastocyst-like structures resembling preimplantation mouse blastocysts. Mechanistically, inhibition of HDAC1/2 and DOT1L activity and activation of RARγ signaling are important for inducing and maintaining totipotent features of TPS cells. Our study opens up a new path toward fully capturing totipotent stem cells in vitro.


Asunto(s)
Células Madre Pluripotentes , Células Madre Totipotentes , Animales , Blastocisto , Diferenciación Celular , Quimera , Cromatina , Ratones , Células Madre Totipotentes/fisiología
17.
Nucleic Acids Res ; 50(21): 12019-12038, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-35425987

RESUMEN

Although extended pluripotent stem cells (EPSCs) have the potential to form both embryonic and extraembryonic lineages, how their transcriptional regulatory mechanism differs from that of embryonic stem cells (ESCs) remains unclear. Here, we discovered that YY1 binds to specific open chromatin regions in EPSCs. Yy1 depletion in EPSCs leads to a gene expression pattern more similar to that of ESCs than control EPSCs. Moreover, Yy1 depletion triggers a series of epigenetic crosstalk activities, including changes in DNA methylation, histone modifications and high-order chromatin structures. Yy1 depletion in EPSCs disrupts the enhancer-promoter (EP) interactions of EPSC-specific genes, including Dnmt3l. Yy1 loss results in DNA hypomethylation and dramatically reduces the enrichment of H3K4me3 and H3K27ac on the promoters of EPSC-specific genes by upregulating the expression of Kdm5c and Hdac6 through facilitating the formation of CCCTC-binding factor (CTCF)-mediated EP interactions surrounding their loci. Furthermore, single-cell RNA sequencing (scRNA-seq) experiments revealed that YY1 is required for the derivation of extraembryonic endoderm (XEN)-like cells from EPSCs in vitro. Together, this study reveals that YY1 functions as a key regulator of multidimensional epigenetic crosstalk associated with extended pluripotency.


Asunto(s)
Blastocisto , Epigénesis Genética , Factor de Transcripción YY1 , Cromatina/genética , Cromatina/metabolismo , Células Madre Embrionarias/metabolismo , Regiones Promotoras Genéticas , Factor de Transcripción YY1/metabolismo , Ratones , Animales , Blastocisto/citología , Blastocisto/metabolismo
18.
Nature ; 605(7909): 325-331, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35418683

RESUMEN

Cellular reprogramming can manipulate the identity of cells to generate the desired cell types1-3. The use of cell intrinsic components, including oocyte cytoplasm and transcription factors, can enforce somatic cell reprogramming to pluripotent stem cells4-7. By contrast, chemical stimulation by exposure to small molecules offers an alternative approach that can manipulate cell fate in a simple and highly controllable manner8-10. However, human somatic cells are refractory to chemical stimulation owing to their stable epigenome2,11,12 and reduced plasticity13,14; it is therefore challenging to induce human pluripotent stem cells by chemical reprogramming. Here we demonstrate, by creating an intermediate plastic state, the chemical reprogramming of human somatic cells to human chemically induced pluripotent stem cells that exhibit key features of embryonic stem cells. The whole chemical reprogramming trajectory analysis delineated the induction of the intermediate plastic state at the early stage, during which chemical-induced dedifferentiation occurred, and this process was similar to the dedifferentiation process that occurs in axolotl limb regeneration. Moreover, we identified the JNK pathway as a major barrier to chemical reprogramming, the inhibition of which was indispensable for inducing cell plasticity and a regeneration-like program by suppressing pro-inflammatory pathways. Our chemical approach provides a platform for the generation and application of human pluripotent stem cells in biomedicine. This study lays foundations for developing regenerative therapeutic strategies that use well-defined chemicals to change cell fates in humans.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Células Madre Pluripotentes Inducidas , Linaje de la Célula , Humanos , Células Madre Pluripotentes Inducidas/citología
19.
Nat Med ; 28(2): 272-282, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35115708

RESUMEN

Human pluripotent stem-cell-derived islets (hPSC-islets) are a promising cell resource for diabetes treatment1,2. However, this therapeutic strategy has not been systematically assessed in large animal models physiologically similar to humans, such as non-human primates3. In this study, we generated islets from human chemically induced pluripotent stem cells (hCiPSC-islets) and show that a one-dose intraportal infusion of hCiPSC-islets into diabetic non-human primates effectively restored endogenous insulin secretion and improved glycemic control. Fasting and average pre-prandial blood glucose levels significantly decreased in all recipients, accompanied by meal or glucose-responsive C-peptide release and overall increase in body weight. Notably, in the four long-term follow-up macaques, average hemoglobin A1c dropped by over 2% compared with peak values, whereas the average exogenous insulin requirement reduced by 49% 15 weeks after transplantation. Collectively, our findings show the feasibility of hPSC-islets for diabetic treatment in a preclinical context, marking a substantial step forward in clinical translation of hPSC-islets.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Glucemia , Diabetes Mellitus Experimental/terapia , Humanos , Insulina , Trasplante de Islotes Pancreáticos/fisiología , Primates
20.
Protein Cell ; 13(10): 742-759, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35023014

RESUMEN

Senescence, a stable state of growth arrest, affects many physiological and pathophysiological processes, especially aging. Previous work has indicated that transcription factors (TFs) play a role in regulating senescence. However, a systematic study of regulatory TFs during replicative senescence (RS) using multi-omics analysis is still lacking. Here, we generated time-resolved RNA-seq, reduced representation bisulfite sequencing (RRBS) and ATAC-seq datasets during RS of mouse skin fibroblasts, which demonstrated that an enhanced inflammatory response and reduced proliferative capacity were the main characteristics of RS in both the transcriptome and epigenome. Through integrative analysis and genetic manipulations, we found that transcription factors E2F4, TEAD1 and AP-1 are key regulators of RS. Overexpression of E2f4 improved cellular proliferative capacity, attenuated SA-ß-Gal activity and changed RS-associated differentially methylated sites (DMSs). Moreover, knockdown of Tead1 attenuated SA-ß-Gal activity and partially altered the RS-associated transcriptome. In addition, knockdown of Atf3, one member of AP-1 superfamily TFs, reduced Cdkn2a (p16) expression in pre-senescent fibroblasts. Taken together, the results of this study identified transcription factors regulating the senescence program through multi-omics analysis, providing potential therapeutic targets for anti-aging.


Asunto(s)
Senescencia Celular , Factor de Transcripción E2F4 , Factores de Transcripción de Dominio TEA , Factor de Transcripción AP-1 , Envejecimiento , Animales , Senescencia Celular/genética , Factor de Transcripción E2F4/genética , Fibroblastos/metabolismo , Ratones , Factores de Transcripción de Dominio TEA/genética , Factores de Transcripción de Dominio TEA/metabolismo , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...